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We want a machine to imitate human brain and understand meaning of
words.

Then, it will be able to clasify texts, among other things.

How to design it?
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Distributional semantic models for Russian

Russian National Corpus web site is http: //ruscorpora. ru. To
acknowledge their efforts, we launched RusVectores web service
(‘Russian vectors’ in Latin)

http://ling.go.mail.ru/dsm

Distributional semantic models for English (and Norwegian)

http://1tr.uio.no/semvec

You can entertain yourself during the tutorial :-)
Later we will look closer at the features of these services.


http://ruscorpora.ru
http://ling.go.mail.ru/dsm
http://ltr.uio.no/semvec
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Tiers of linguistic analysis

Computational linguistics can comparatively easy model lower tiers of
language:

» graphematics — how words are spelled

» phonetics — how words are pronounced
» morphology — how words inflect

» syntax —how words interact in sentences
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But how to represent meaning?

>

>

>

Semantics is difficult to represent formally.
We need machine-readable word representations.

Words which are similar in their meaning should possess
mathematically similar representations.

‘Judge’ is similar to ‘court’ but not to ‘kludge’, even though their
surface form suggests the opposite.

Why so?
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How we can make a computer understand this?

Possible data sources

The methods of computationally representing semantic relations in
natural languages fall into two large groups:

1. Manually building ontologies (knowledge-based approach). Works
top-down: from abstractions to real texts.
2. Extracting semantics from usage patterns in text corpora

(distributional approach). Works bottom-up: from real texts to
abstractions.

The second approach is today’s topic.

Meaning is actually a sum of contexts: ‘You shall know a word by the
company it keeps’ [Firth, 1957]

Distributional semantics models (DSMs) are built upon lexical
co-occurrences in a large training corpus (lots of natural texts).
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In distributional semantics, meanings of particular words are
represented as vectors of real values derived from frequency of their
co-occurrences with other words in the training corpus.

» Words are axes (dimensions) in multi-dimensional semantic space.
» At the same time, words are vectors or points in this space.



Distributional hypothesis and word embeddings

A simple example of a symmetric co-occurrence matrix:

vector | meaning | hamster | corpus | weasel | animal
vector 0 10 0 8 0 0
meaning 10 0 1 15 0 0
hamster 0 1 0 0 20 14
corpus 8 15 0 0 0 2
weasel 0 0 20 0 0 21
animal 0 0 14 2 21 0




Distributional hypothesis and word embeddings

A simple example of a symmetric co-occurrence matrix:

vector | meaning | hamster | corpus | weasel | animal
vector 0 10 0 8 0 0
meaning 10 0 1 15 0 0
hamster 0 1 0 0 20 14
corpus 8 15 0 0 0 2
weasel 0 0 20 0 0 21
animal 0 0 14 2 21 0

We produced meaningful representations in a completely unsupervised

way!
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Similar words are close to each other in the space defined by their

typical co-occurrences
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Curse of dimensionality

» With large corpora, we can end up with millions of dimensions
(axes, words).

» But the vectors are very sparse, most components are zero.

» One can reduce vector sizes to some reasonable values, and still
retain meaningful relations between them.

» Such dense vectors are called ‘word embeddings’.
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Can we prove that tomatoes are more similar to each other than to
philosophy? .5
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Distributional hypothesis and word embeddings

Semantic similarity between words is usually measured by cosine
similarity of their corresponding vectors.

» Similarity lowers as angle between word vectors grows.
» Similarity grows as the angle lessens.
V(w1) x V(we)

oS ) = G ) x [V(w2)

cos(tomat, philosophy) = 0.00698
cos(pomidor, philosophy) = —0.03429
cos(tomat, pomidor) = 0.65049
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Embeddings reduced to 2 dimensions and visualized by t-SNE

algorithm
[Van der Maaten and Hinton, 2008]
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Main approaches to produce word embeddings
1. Point-wise mutual information (PMI) association matrices, factorized
by SVD (so called count-based models) [Bullinaria and Levy, 2007];

2. Predictive models using artificial neural networks, introduced in
[Bengio et al., 2003] and [Mikolov et al., 2013] (word2vec):

» Continuous Bag-of-Words (CBOW),
» Continuous Skip-Gram (skipgram);

3. Global Vectors for Word Representation (GloVe)
[Pennington et al., 2014];

4. ..etc

Two last approaches became super popular in the recent years and
boosted almost all areas of natural language processing.

Their principal difference from previous methods is that they actively
employ machine learning.
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First, each word in the vocabulary receives a random initial vector of a
pre-defined size. What happens next?

... efficient methat for laning hidh quoliny clistribuiedt veckor - -

oy
warch

Learning good vectors

During training, we move through the training corpus with a sliding
window.

Each instance (word in running text) is a prediction problem: the
objective is to predict the current word with the help of its contexts (or
vice versa).

The outcome of the prediction determines whether we adjust the
current word vector and in what direction.

Gradually, vectors converge to (hopefully) optimal values.
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» Continuous Bag-of-words (CBOW) and Continuous Skip-gram
(skip-gram) are conceptually similar but differ in important details;

» Shown to outperform traditional count DSMs in various semantic
tasks for English (Baroni et al. 2014).

At training time, CBOW learns to predict current word based on its
context, while Skip-Gram learns to predict context based on the current
word.

20
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Continuous Bag-of-Words and Continuous Skip-Gram: two algorithms

in word2vec paper

INPUT PROJECTION QUTRUT INPUT PROJECTION  OUTPUT
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wit-1) « wit-1}
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CBOW Skip-gram
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It is clear that none of these algorithms is actually deep learning.
Neural network is very simple, with only one hidden layer.

The training objective is to maximize the probability of observing the
correct output word(s) w; given the context word(s) cw;...cw;, with
regard to their current embeddings (sets of neural weights).

Cost function C for CBOW is the negative log probability
(cross-entropy) of the correct answer:

C = —log(p(wi|cws...cw;)) (2)
or for SkipGram
Z log(p(cw;|w;)) (3)

and the learning itself is implemented with stochastic gradient descent
and (optionally) adaptive learning rate.

22
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» CBOW: average vector for all context words. We check whether
the current word vector is the closest to it among all vocabulary
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context words vector is the closest to it among all vocabulary words.

23



Existing approaches and implementations

Prediction for each training instance is basically:

» CBOW: average vector for all context words. We check whether
the current word vector is the closest to it among all vocabulary
words.

» SkipGram: current word vector. We check whether each of
context words vector is the closest to it among all vocabulary words.

Reminder: this ‘closeness’ is calculated with the help of cosine
similarity.

After the training, we have 2 weight matrices: of context vectors and of
output vectors. As a rule, only output vectors are used in practical
tasks.

23
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Existing approaches and implementations

CBOW and SkipGram training algorithms

‘the vector of a word w is “dragged” back-and-forth by the vectors of
W’s co-occurring words, as if there are physical strings between w and
its neighbors...like gravity, or force-directed graph layout.’” [Rong, 2014]
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Useful demo of word2vec algorithms: https://ronxin.github.io/wevi/
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Selection of learning material

At each training instance, to find out whether the prediction is true, we
have to iterate over all words in the vocabulary.

This is not feasible. That's why word2vec uses one of these two smart
tricks:

1. Hierarchical softmax;

2. Negative samping.
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Hierarchical softmax
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Hierarchical softmax

n(w,.1)

n(w,,2)
n(w,,3) _ V4 .
hY //
SO OG-S Q\O
W, oW, Wy Wy Wy, Wy

Calculate joint probability of all items in the binary tree path to the true
word. This will be the probability of choosing the right word.

Now for vocabulary V, the complexity of each prediction is O(log(V))
instead of O(V).

26
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Negative sampling

The idea of negative sampling is even simpler:
» do not iterate over all words in the vocabulary;

» take your true word and sample 5...15 random ‘noise’ words from
the vocabulary;

» these words serve as negative examples.

Calculating probabilities for 15 words is of course much faster than
iterating over all the vocabulary
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Things are complicated

Model performance hugely depends on training settings
(hyperparameters):

1.

CBOW or skip-gram algorithm. Needs further research; SkipGram
is generally better (but slower). CBOW seems to be better on small
corpora (less than 100 min tokens).

. Vector size: how many distributed semantic features (dimensions)

we use to describe a word. The more is not always the better.

Window size: context width and influence of distance. Topical
(associative) or functional (semantic proper) models.

Frequency threshold: useful to get rid of long noisy lexical tail;

Selection of learning material: hierarchical softmax or negative
sampling (used more often);

Number of iterations on our training data, etc...
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Model performance in semantic relatedness task depending on context
width and vector size.
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Existing approaches and implementations

How do we evaluate trained models?
» Semantic relatedness (what is the association degree?):
» Rubenstein and Goodenough dataset (1965)
» WordSim 353 dataset (2002)
» MEN dataset (2013)
» SimLex-999 dataset (includes Russian since 2015)
» Synonym detection (what is most similar?):
» TOEFL dataset (1997)
» Concept categorization (what groups with what?):
» ESSLI 2008 dataset
» Battig dataset (2010)
» Analogical inference (Aisto Bas Cisto ?):
» Google Analogy dataset (2013)
» Many domain-specific datasets inspired by Google Analogy
» Correlation with manually crafted linguistic features:
» QVEC (2015)

Subject to many discussions! The topic of a special workshop at
ACL2016:

https://sites.google.com/site/repevalacli6/
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Existing approaches and implementations

Main frameworks and toolkits
1. Dissect (http://clic.cimec.unitn.it/composes/toolkit/);

2. word2vec original C code
(https://word2vec.googlecode.com/svn/trunk/)

3. Gensim framework for Python, including word2vec implementations
(http://radimrehurek.com/gensim/);

4. word2vec implementations in Google’s TensorFlow
(https://www.tensorflow.org/tutorials/word2vec);

5. GloVe reference implementation
(http://nlp.stanford.edu/projects/glove/).


http://clic.cimec.unitn.it/composes/toolkit/
https://word2vec.googlecode.com/svn/trunk/
http://radimrehurek.com/gensim/
https://www.tensorflow.org/tutorials/word2vec
http://nlp.stanford.edu/projects/glove/

Existing approaches and implementations

A bunch of observations

» Wikipedia is not the best training corpus: fluctuates wildly
depending on hyperparameters. Perhaps, too specific language.




Existing approaches and implementations

A bunch of observations

» Wikipedia is not the best training corpus: fluctuates wildly
depending on hyperparameters. Perhaps, too specific language.

» Normalize you data: lowercase, lemmatize, merge multi-word
entities.




Existing approaches and implementations

» Wikipedia is not the best training corpus: fluctuates wildly
depending on hyperparameters. Perhaps, too specific language.

» Normalize you data: lowercase, lemmatize, merge multi-word
entities.

» It helps to augment words with PoS tags before training (‘crars_ N’).
As a result, your model becomes aware of morphological ambiguity.
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A bunch of observations
» Wikipedia is not the best training corpus: fluctuates wildly
depending on hyperparameters. Perhaps, too specific language.

» Normalize you data: lowercase, lemmatize, merge multi-word
entities.

» It helps to augment words with PoS tags before training (‘crars_ N’).
As a result, your model becomes aware of morphological ambiguity.

» Remove your stop words yourself. Statistical downsampling
implemented in word2vec algorithms can easily deprive you of
valuable text data.
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Model formats

Models can come in several formats:

1. Simple text format: words and sequences of values representing
their vectors, one word per ling; first line gives information on the
number of words in the model and vector size.

2. The same in the binary form.

3. Gensim binary format: uses NumPy matrices saved via Python
pickles; stores a lot of additional information (input vectors, training
algorithm, word frequency, etc).

Gensim works with all of these formats.
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What can we find in the models?

» Distributional models are based on word co-occurrences in large
training corpora;
» they represent words as dense lexical vectors (embeddings);

» the models are also distributed: each word is represented as
multiple activations (not a one-hot vector);

» words occurring in similar contexts have similar vectors;

» one can find nearest semantic associates of a given word by
calculating cosine similarity between vectors.
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Nearest semantic associates

BEKTOD:

mapamerp 0.433
mumoss 0.423
nepemenHas 0.423
koopauaara 0.413
mrockocThb 0.410

nampasienne 0.404

N o ok~

(From a model trained on the Russian National Corpus)
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What can we find in the models?

Works with multi-word entities as well

Alan_Turing (from a model trained on
Google News corpus (2013)):

1. Turing 0.68
2. Charles_Babbage 0.65
mathematician_Alan_Turing 0.62

pioneer_Alan_Turing 0.60
On_Computable_Numbers 0.60

o o~ w

36



What can we find in the models?

One can apply simple algebraic operations to word vectors (addition,
subtraction, finding average vector for a group of words). They reflect
semantic relationships between words.

O

swimming

Male-Female Verb tense

37



What can we find in the models?

One can apply simple algebraic operations to word vectors (addition,
subtraction, finding average vector for a group of words). They reflect
semantic relationships between words.

)
swimming

Male-Female Verb tense

caMoJIeT is t0 KpbL1o as mammmHa i 10 ?

37



What can we find in the models?

One can apply simple algebraic operations to word vectors (addition,
subtraction, finding average vector for a group of words). They reflect
semantic relationships between words.

)
swimming

Male-Female Verb tense

camoJIeT IS t0 kpbL1o as mammmHa IS 10 ? (koseco)

37



What can we find in the models?

One can apply simple algebraic operations to word vectors (addition,
subtraction, finding average vector for a group of words). They reflect
semantic relationships between words.

O

swimming

Male-Female Verb tense

camoJIeT IS t0 kpbL1o as mammmHa IS 10 ? (koseco)
This paves way for many sense-related applications.
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What can we find in the models?

India

! "

?7?

Nigeria

Boko_Haram
googlenews model
1. jehadis 0.53280
2. Naxalites 0.52525
3. Kashmiri_militant
0.52517
4. LeT 0.51489
5. Lashkar_e_Tayyaba
0.51067
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What can we find in the models?

Nigeria Egypt

! "

299

googlenews model

Boko Haram

1. Muslim_Brotherhood
0.56775

. Egyptians 0.56694

. Mubarak 0.56404

. Hamas 0.55456

. Egyptian 0.53355

s WM
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What can we find in the models?

Nigeria Russia

! !

222
Boko_Haram e

googlenews model

1. Kremlin 0.57884

2. Basayev 0.55851

3. Moscow 0.55125

4. Chechen_separatist_rebels
0.52799

5. Chechen_rebe
0.52108

40
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What can we find in the models?

Nigeria Russi

! !

?7?

[

Boko_Haram

googlenews model

1. Kremlin 0.57884

2. Basayev 0.55851

3. Moscow 0.55125

4. Chechen_separatist_rebels
0.52799

5. Chechen_rebe
0.52108

Try yourself at
http://1ltr.uio.no/semvec/calculator,

http://ling.go.mail.ru/dsm/calculator
40
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What can we find in the models?

Hot topics in word embeddings now

(based on impressions from this year’s ACL conference)

>

v

Going beyond just synonyms and similarity: detecting hyponyms,
hypernyms and antonyms;

Using embeddings to help other NLP tasks: e.g., parsing;
Finding better ways to evaluate models;
Learning bilingual or multilingual word embeddings;

Diachronic word embeddings: discovering semantic shifts
happening over time;

...and of course going beyond words: sentence embeddings.
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More than words: representing texts

» Word embeddings allow to trace semantic similarity at word level.
» Can they help in detecting similar texts?
» Yes they can!

» Basically, we just need a way to combine word vectors into
phrase/sentence/document vectors.

» For example, they can be 300-dimensional (as in the models).

» After the documents are represented as vectors,
classification/clustering becomes trivial.

42
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Simple but efficient: semantic fingerprints

» Whole document can be represented as average vector S over
vectors of all words wy...nin it: ‘semantic fingerprints’.

Average

Semantic
fingerprint

n
* _»n (4)
i=0

o1
S=-—
n
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Why semantic fingerprints are so cool?

>

| 2

Generalized representations do not depend on particular words;

With semantic fingerprints approach, we take advantage of
‘semantic features’ learned during the model training;

Topically connected words collectively increase or decrease
expression of the corresponding semantic components;

Thus, topical words automatically become more important than
noise words;

Semantic fingerprints are precise enough to reveal topical
differences between documents in corpora;

Semantic fingerprints work fast and can reuse already trained
models.

See more in [Kutuzov et al., 2016] (shameless plug :))).
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More than words: representing texts

We can also learn vectors for texts during training

» [Mikolov et al., 2013] proposed Paragraph Vector;

» the algorithm takes as an input sentences/texts tagged with
(possibly unique) identifiers;

learns distributed representations for these multi-word entities, such
that similar sentences have similar vectors, etc...;

implemented in Gensim under the name doc2vec;

not much studied;

» very memory-hungry (but one can reduce the number of tags)!

v

v
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More than words: representing texts

Other possibilities

» [Taddy, 2015] proposed classifying texts by inverting distributional
models:

» employs Bayes rule to calculate the likelihood of a model given a
sentence;

» for example, models trained on positive and negative reviews;
» implemented in Gensim (for hierarchical softmax models only);
» drawback: you need separate models for each of your classes.
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More than words: representing texts

There can be many other ways to employ word embeddings in
classification tasks!
We will try to work with the semantic fingerprints approach.
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Thank you for your attention!
Questions are welcome.

Distributed Word Embeddings
in Text Classification

Andrey Kutuzov (andreku@ifi.uio.no)
Language Technology Group
University of Oslo

ISMW-FRUCT school
Saint-Petersburg, Russia
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