Distributional Word Embeddings

in Text Classification

Andrey Kutuzov
University of Oslo
Language Technology Group

September 1, 2016

0 Our motivation

Our motivation

70
60
50
40
30
20
10
J -
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Number of publications on word embeddings in Association for
Computational Linguistics Anthology (http://aclanthology.info/)

http://aclanthology.info/

Mapping words in brain

I
like
enjoy
deep
learning
NLP

flying

like enjoy deep learning NLP flying
2 1
0

S = == O O O O

Mapping words in brain

like enjoy deep learning NLP flying
I 0
like

enjoy

learning
NLP

flying

I
0
2
1
deep 0
0
0
0
0

S = == O O O O

We want a machine to imitate human brain and understand meaning of
words.

Mapping words in brain

like enjoy deep learning NLP flying
I 0
like

enjoy

learning
NLP

flying

I
0
2
1
deep 0
0
0
0
0

O = =m0 O O O

We want a machine to imitate human brain and understand meaning of
words.

Then, it will be able to clasify texts, among other things.

How to design it?

© TLDR

TL:DR

Distributional semantic models for Russian

Russian National Corpus web site is http: //ruscorpora. ru. To
acknowledge their efforts, we launched RusVectores web service
(‘Russian vectors’ in Latin)

http://ruscorpora.ru
http://ling.go.mail.ru/dsm
http://ltr.uio.no/semvec

TL:DR

Distributional semantic models for Russian

Russian National Corpus web site is http: //ruscorpora. ru. To
acknowledge their efforts, we launched RusVectores web service
(‘Russian vectors’ in Latin)

http://ling.go.mail.ru/dsm

Distributional semantic models for English (and Norwegian)

http://1tr.uio.no/semvec

You can entertain yourself during the tutorial :-)
Later we will look closer at the features of these services.

http://ruscorpora.ru
http://ling.go.mail.ru/dsm
http://ltr.uio.no/semvec

e Distributional hypothesis and word embeddings

Distributional hypothesis and word embeddings

Tiers of linguistic analysis

Distributional hypothesis and word embeddings

Tiers of linguistic analysis

Computational linguistics can comparatively easy model lower tiers of
language:
» graphematics — how words are spelled

Distributional hypothesis and word embeddings

Tiers of linguistic analysis

Computational linguistics can comparatively easy model lower tiers of
language:

» graphematics — how words are spelled

» phonetics — how words are pronounced

Distributional hypothesis and word embeddings

Tiers of linguistic analysis

Computational linguistics can comparatively easy model lower tiers of
language:
» graphematics — how words are spelled

» phonetics — how words are pronounced
» morphology — how words inflect

Distributional hypothesis and word embeddings

Tiers of linguistic analysis

Computational linguistics can comparatively easy model lower tiers of
language:

» graphematics — how words are spelled

» phonetics — how words are pronounced
» morphology — how words inflect

» syntax —how words interact in sentences

Distributional hypothesis and word embeddings

But how to represent meaning?

Distributional hypothesis and word embeddings

But how to represent meaning?

» Semantics is difficult to represent formally.

Distributional hypothesis and word embeddings

But how to represent meaning?

» Semantics is difficult to represent formally.
» We need machine-readable word representations.

» Words which are similar in their meaning should possess
mathematically similar representations.

Distributional hypothesis and word embeddings

But how to represent meaning?

>

>

>

Semantics is difficult to represent formally.

We need machine-readable word representations.

Words which are similar in their meaning should possess
mathematically similar representations.

‘Judge’ is similar to ‘court’ but not to ‘kludge’, even though their
surface form suggests the opposite.

Distributional hypothesis and word embeddings

But how to represent meaning?

>

>

>

Semantics is difficult to represent formally.
We need machine-readable word representations.

Words which are similar in their meaning should possess
mathematically similar representations.

‘Judge’ is similar to ‘court’ but not to ‘kludge’, even though their
surface form suggests the opposite.

Why so?

Distributional hypothesis and word embeddings

Arbitrariness of a linguistic sign

Distributional hypothesis and word embeddings

Arbitrariness of a linguistic sign

Unlike road signs, words do not possess a direct link between form and

meaning. ‘Lantern’ concept can be expressed by any sequence of
letters or sounds:

Distributional hypothesis and word embeddings

Arbitrariness of a linguistic sign

Unlike road signs, words do not possess a direct link between form and
meaning. ‘Lantern’ concept can be expressed by any sequence of
letters or sounds:

» lantern

Distributional hypothesis and word embeddings

Arbitrariness of a linguistic sign

Unlike road signs, words do not possess a direct link between form and
meaning. ‘Lantern’ concept can be expressed by any sequence of
letters or sounds:

» lantern
> |ykt

Distributional hypothesis and word embeddings

Arbitrariness of a linguistic sign

Unlike road signs, words do not possess a direct link between form and
meaning. ‘Lantern’ concept can be expressed by any sequence of
letters or sounds:

» lantern
> |ykt

> JlaMIia

Distributional hypothesis and word embeddings

Arbitrariness of a linguistic sign

Unlike road signs, words do not possess a direct link between form and
meaning. ‘Lantern’ concept can be expressed by any sequence of
letters or sounds:

lantern
> |ykt

> JlaMIia

v

lucerna

v

Distributional hypothesis and word embeddings

Arbitrariness of a linguistic sign

Unlike road signs, words do not possess a direct link between form and
meaning. ‘Lantern’ concept can be expressed by any sequence of
letters or sounds:

lantern
lykt

> JlaMIia

v

v

lucerna

v

> 3P3JI

Distributional hypothesis and word embeddings

Arbitrariness of a linguistic sign

Unlike road signs, words do not possess a direct link between form and
meaning. ‘Lantern’ concept can be expressed by any sequence of
letters or sounds:

lantern
lykt

> JlaMIia

v

v

lucerna

v

> 3P3JI

Distributional hypothesis and word embeddings

How we can make a computer understand this?

Distributional hypothesis and word embeddings

How we can make a computer understand this?

Possible data sources

Distributional hypothesis and word embeddings

How we can make a computer understand this?

Possible data sources

The methods of computationally representing semantic relations in
natural languages fall into two large groups:

Distributional hypothesis and word embeddings

How we can make a computer understand this?

Possible data sources

The methods of computationally representing semantic relations in
natural languages fall into two large groups:

1. Manually building ontologies (knowledge-based approach). Works
top-down: from abstractions to real texts.

Distributional hypothesis and word embeddings

How we can make a computer understand this?

Possible data sources

The methods of computationally representing semantic relations in
natural languages fall into two large groups:

1. Manually building ontologies (knowledge-based approach). Works
top-down: from abstractions to real texts.

2. Extracting semantics from usage patterns in text corpora

(distributional approach). Works bottom-up: from real texts to
abstractions.

Distributional hypothesis and word embeddings

How we can make a computer understand this?

Possible data sources

The methods of computationally representing semantic relations in
natural languages fall into two large groups:

1. Manually building ontologies (knowledge-based approach). Works
top-down: from abstractions to real texts.

2. Extracting semantics from usage patterns in text corpora
(distributional approach). Works bottom-up: from real texts to
abstractions.

The second approach is today’s topic.

Distributional hypothesis and word embeddings

How we can make a computer understand this?

Possible data sources

The methods of computationally representing semantic relations in
natural languages fall into two large groups:

1. Manually building ontologies (knowledge-based approach). Works
top-down: from abstractions to real texts.

2. Extracting semantics from usage patterns in text corpora
(distributional approach). Works bottom-up: from real texts to
abstractions.

The second approach is today’s topic.

Meaning is actually a sum of contexts: ‘You shall know a word by the
company it keeps’ [Firth, 1957]

Distributional hypothesis and word embeddings

How we can make a computer understand this?

Possible data sources

The methods of computationally representing semantic relations in
natural languages fall into two large groups:

1. Manually building ontologies (knowledge-based approach). Works
top-down: from abstractions to real texts.
2. Extracting semantics from usage patterns in text corpora

(distributional approach). Works bottom-up: from real texts to
abstractions.

The second approach is today’s topic.

Meaning is actually a sum of contexts: ‘You shall know a word by the
company it keeps’ [Firth, 1957]

Distributional semantics models (DSMs) are built upon lexical
co-occurrences in a large training corpus (lots of natural texts).

Distributional hypothesis and word embeddings

In distributional semantics, meanings of particular words are
represented as vectors of real values derived from frequency of their
co-occurrences with other words in the training corpus.

Distributional hypothesis and word embeddings

In distributional semantics, meanings of particular words are
represented as vectors of real values derived from frequency of their
co-occurrences with other words in the training corpus.

» Words are axes (dimensions) in multi-dimensional semantic space.

Distributional hypothesis and word embeddings

In distributional semantics, meanings of particular words are
represented as vectors of real values derived from frequency of their
co-occurrences with other words in the training corpus.

» Words are axes (dimensions) in multi-dimensional semantic space.
» At the same time, words are vectors or points in this space.

Distributional hypothesis and word embeddings

A simple example of a symmetric co-occurrence matrix:

vector | meaning | hamster | corpus | weasel | animal
vector 0 10 0 8 0 0
meaning 10 0 1 15 0 0
hamster 0 1 0 0 20 14
corpus 8 15 0 0 0 2
weasel 0 0 20 0 0 21
animal 0 0 14 2 21 0

Distributional hypothesis and word embeddings

A simple example of a symmetric co-occurrence matrix:

vector | meaning | hamster | corpus | weasel | animal
vector 0 10 0 8 0 0
meaning 10 0 1 15 0 0
hamster 0 1 0 0 20 14
corpus 8 15 0 0 0 2
weasel 0 0 20 0 0 21
animal 0 0 14 2 21 0

We produced meaningful representations in a completely unsupervised

way!

Distributional hypothesis and word embeddings

Similar words are close to each other in the space defined by their

typical co-occurrences

Parts
A
(@] A
@A
Camera
Sea World
dol Phi.h

Forpoise

Distributional hypothesis and word embeddings

Curse of dimensionality

Distributional hypothesis and word embeddings

Curse of dimensionality

» With large corpora, we can end up with millions of dimensions
(axes, words).

Distributional hypothesis and word embeddings

Curse of dimensionality

» With large corpora, we can end up with millions of dimensions
(axes, words).

» But the vectors are very sparse, most components are zero.

Distributional hypothesis and word embeddings

Curse of dimensionality

» With large corpora, we can end up with millions of dimensions
(axes, words).

» But the vectors are very sparse, most components are zero.

» One can reduce vector sizes to some reasonable values, and still
retain meaningful relations between them.

Distributional hypothesis and word embeddings

Curse of dimensionality

» With large corpora, we can end up with millions of dimensions
(axes, words).

» But the vectors are very sparse, most components are zero.

» One can reduce vector sizes to some reasonable values, and still
retain meaningful relations between them.

» Such dense vectors are called ‘word embeddings’.

Distributional hypothesis and word embeddings

nomuaop

0.15

0.10

0.05

0.00

—0.05f

-0.10}

-0.15

0 160 200 300 400 500

Distributional hypothesis and word embeddings

ToMaT

0.10f

0.05

0.00

—0.05

—0.10}

-0.15

160 200 300 400 500

o

Distributional hypothesis and word embeddings

unnocodpus
0.15 L L

0.10

0.00

—0.05

—0.10}

—0.15

-0.20

0 100 200 300 400 500

Distributional hypothesis and word embeddings

unnocodpus
0.15 L L

0.10

0.00

—0.05

—0.10}

—0.15

-0.20

0 160 260 360 460 500
Can we prove that tomatoes are more similar to each other than to
philosophy? .5

Distributional hypothesis and word embeddings

Semantic similarity between words is usually measured by cosine
similarity of their corresponding vectors.

Distributional hypothesis and word embeddings

Semantic similarity between words is usually measured by cosine
similarity of their corresponding vectors.

» Similarity lowers as angle between word vectors grows.

Distributional hypothesis and word embeddings

Semantic similarity between words is usually measured by cosine
similarity of their corresponding vectors.

» Similarity lowers as angle between word vectors grows.
» Similarity grows as the angle lessens.

Distributional hypothesis and word embeddings

Semantic similarity between words is usually measured by cosine
similarity of their corresponding vectors.

» Similarity lowers as angle between word vectors grows.
» Similarity grows as the angle lessens.
V(w1) x V(we)

oS) = G) x [V(w2)

cos(tomat, philosophy) = 0.00698

Distributional hypothesis and word embeddings

Semantic similarity between words is usually measured by cosine
similarity of their corresponding vectors.

» Similarity lowers as angle between word vectors grows.
» Similarity grows as the angle lessens.
V(w1) x V(we)

oS) = G) x [V(w2)

cos(tomat, philosophy) = 0.00698
cos(pomidor, philosophy) = —0.03429

Distributional hypothesis and word embeddings

Semantic similarity between words is usually measured by cosine
similarity of their corresponding vectors.

» Similarity lowers as angle between word vectors grows.
» Similarity grows as the angle lessens.
V(w1) x V(we)

oS) = G) x [V(w2)

cos(tomat, philosophy) = 0.00698
cos(pomidor, philosophy) = —0.03429
cos(tomat, pomidor) = 0.65049

Distributional hypothesis and word embeddings

400 keyboard
mouse
laptop
200+ R |
computer aircraft
of vehicle |
car
tank
-200f i 1
wine
beer
—400 - whisky
—400 —3‘00 —200 —1‘00 é 160 260 360 400

Embeddings reduced to 2 dimensions and visualized by t-SNE

algorithm
[Van der Maaten and Hinton, 2008]

e Existing approaches and implementations

Existing approaches and implementations

Main approaches to produce word embeddings

1. Point-wise mutual information (PMI) association matrices, factorized
by SVD (so called count-based models) [Bullinaria and Levy, 2007];

Existing approaches and implementations

Main approaches to produce word embeddings

1. Point-wise mutual information (PMI) association matrices, factorized
by SVD (so called count-based models) [Bullinaria and Levy, 2007];

2. Predictive models using artificial neural networks, introduced in
[Bengio et al., 2003] and [Mikolov et al., 2013] (word2vec):

Existing approaches and implementations

Main approaches to produce word embeddings

1. Point-wise mutual information (PMI) association matrices, factorized
by SVD (so called count-based models) [Bullinaria and Levy, 2007];
2. Predictive models using artificial neural networks, introduced in
[Bengio et al., 2003] and [Mikolov et al., 2013] (word2vec):
» Continuous Bag-of-Words (CBOW),
» Continuous Skip-Gram (skipgram);

Existing approaches and implementations

Main approaches to produce word embeddings
1. Point-wise mutual information (PMI) association matrices, factorized
by SVD (so called count-based models) [Bullinaria and Levy, 2007];
2. Predictive models using artificial neural networks, introduced in
[Bengio et al., 2003] and [Mikolov et al., 2013] (word2vec):
» Continuous Bag-of-Words (CBOW),
» Continuous Skip-Gram (skipgram);
3. Global Vectors for Word Representation (GloVe)
[Pennington et al., 2014];

4. ..etc

Two last approaches became super popular in the recent years and
boosted almost all areas of natural language processing.

Existing approaches and implementations

Main approaches to produce word embeddings
1. Point-wise mutual information (PMI) association matrices, factorized
by SVD (so called count-based models) [Bullinaria and Levy, 2007];

2. Predictive models using artificial neural networks, introduced in
[Bengio et al., 2003] and [Mikolov et al., 2013] (word2vec):

» Continuous Bag-of-Words (CBOW),
» Continuous Skip-Gram (skipgram);

3. Global Vectors for Word Representation (GloVe)
[Pennington et al., 2014];

4. ..etc

Two last approaches became super popular in the recent years and
boosted almost all areas of natural language processing.

Their principal difference from previous methods is that they actively
employ machine learning.

Existing approaches and implementations

First, each word in the vocabulary receives a random initial vector of a
pre-defined size. What happens next?

Existing approaches and implementations

First, each word in the vocabulary receives a random initial vector of a
pre-defined size. What happens next?
... efficient methat for laning hidh quoliny clistribuiedt veckor - -

oy
warch

Learning good vectors

During training, we move through the training corpus with a sliding
window.

Existing approaches and implementations

First, each word in the vocabulary receives a random initial vector of a
pre-defined size. What happens next?

... efficient methat for laning hidh quoliny clistribuiedt veckor - -

oy
warch

Learning good vectors

During training, we move through the training corpus with a sliding
window.

Each instance (word in running text) is a prediction problem: the
objective is to predict the current word with the help of its contexts (or
vice versa).

Existing approaches and implementations

First, each word in the vocabulary receives a random initial vector of a
pre-defined size. What happens next?

... efficient methat for laning hidh quoliny clistribuiedt veckor - -

oy
warch

Learning good vectors

During training, we move through the training corpus with a sliding
window.

Each instance (word in running text) is a prediction problem: the
objective is to predict the current word with the help of its contexts (or
vice versa).

The outcome of the prediction determines whether we adjust the
current word vector and in what direction.

Existing approaches and implementations

First, each word in the vocabulary receives a random initial vector of a
pre-defined size. What happens next?

... efficient methat for laning hidh quoliny clistribuiedt veckor - -

oy
warch

Learning good vectors

During training, we move through the training corpus with a sliding
window.

Each instance (word in running text) is a prediction problem: the
objective is to predict the current word with the help of its contexts (or
vice versa).

The outcome of the prediction determines whether we adjust the
current word vector and in what direction.

Gradually, vectors converge to (hopefully) optimal values.

Existing approaches and implementations

» Continuous Bag-of-words (CBOW) and Continuous Skip-gram
(skip-gram) are conceptually similar but differ in important details;

20

Existing approaches and implementations

» Continuous Bag-of-words (CBOW) and Continuous Skip-gram
(skip-gram) are conceptually similar but differ in important details;

» Shown to outperform traditional count DSMs in various semantic
tasks for English (Baroni et al. 2014).

20

Existing approaches and implementations

» Continuous Bag-of-words (CBOW) and Continuous Skip-gram
(skip-gram) are conceptually similar but differ in important details;

» Shown to outperform traditional count DSMs in various semantic
tasks for English (Baroni et al. 2014).

At training time, CBOW learns to predict current word based on its
context, while Skip-Gram learns to predict context based on the current
word.

20

Existing approaches and implementations

Continuous Bag-of-Words and Continuous Skip-Gram: two algorithms

in word2vec paper

INPUT PROJECTION QUTRUT INPUT PROJECTION OUTPUT
wit-2) 4 wit-2)
wit-1) « wit-1}

sUM
i - wit) wit) -
v o
4
wit+1) 4 wit+1)
wit+2) 4 wil+2)
CBOW Skip-gram

21

Existing approaches and implementations

It is clear that none of these algorithms is actually deep learning.
Neural network is very simple, with only one hidden layer.

22

Existing approaches and implementations

It is clear that none of these algorithms is actually deep learning.
Neural network is very simple, with only one hidden layer.

The training objective is to maximize the probability of observing the
correct output word(s) w; given the context word(s) cw;...cw;, with
regard to their current embeddings (sets of neural weights).

22

Existing approaches and implementations

It is clear that none of these algorithms is actually deep learning.
Neural network is very simple, with only one hidden layer.

The training objective is to maximize the probability of observing the
correct output word(s) w; given the context word(s) cw;...cw;, with
regard to their current embeddings (sets of neural weights).

Cost function C for CBOW is the negative log probability
(cross-entropy) of the correct answer:

C = —log(p(wi|cws...cw;)) (2)

22

Existing approaches and implementations

It is clear that none of these algorithms is actually deep learning.
Neural network is very simple, with only one hidden layer.

The training objective is to maximize the probability of observing the
correct output word(s) w; given the context word(s) cw;...cw;, with
regard to their current embeddings (sets of neural weights).

Cost function C for CBOW is the negative log probability
(cross-entropy) of the correct answer:

C = —log(p(wi|cws...cw;)) (2)
or for SkipGram
Z log(p(cw;|w;)) (3)

22

Existing approaches and implementations

It is clear that none of these algorithms is actually deep learning.
Neural network is very simple, with only one hidden layer.

The training objective is to maximize the probability of observing the
correct output word(s) w; given the context word(s) cw;...cw;, with
regard to their current embeddings (sets of neural weights).

Cost function C for CBOW is the negative log probability
(cross-entropy) of the correct answer:

C = —log(p(wi|cws...cw;)) (2)
or for SkipGram
Z log(p(cw;|w;)) (3)

and the learning itself is implemented with stochastic gradient descent
and (optionally) adaptive learning rate.

22

Existing approaches and implementations

Prediction for each training instance is basically:

» CBOW: average vector for all context words. We check whether
the current word vector is the closest to it among all vocabulary
words.

» SkipGram: current word vector. We check whether each of
context words vector is the closest to it among all vocabulary words.

23

Existing approaches and implementations

Prediction for each training instance is basically:

» CBOW: average vector for all context words. We check whether
the current word vector is the closest to it among all vocabulary
words.

» SkipGram: current word vector. We check whether each of
context words vector is the closest to it among all vocabulary words.

Reminder: this ‘closeness’ is calculated with the help of cosine
similarity.

After the training, we have 2 weight matrices: of context vectors and of
output vectors. As a rule, only output vectors are used in practical
tasks.

23

Existing approaches and implementations

CBOW and SkipGram training algorithms

‘the vector of a word w is “dragged” back-and-forth by the vectors of
W’s co-occurring words, as if there are physical strings between w and
its neighbors...like gravity, or force-directed graph layout.’” [Rong, 2014]

https://ronxin.github.io/wevi/

Existing approaches and implementations

CBOW and SkipGram training algorithms

‘the vector of a word w is “dragged” back-and-forth by the vectors of
W’s co-occurring words, as if there are physical strings between w and
its neighbors...like gravity, or force-directed graph layout.’” [Rong, 2014]

X

Input Layer

WI matrix h¢
YN
Connections

Hidden Layer

Yo

Output Layer

https://ronxin.github.io/wevi/

Existing approaches and implementations

CBOW and SkipGram training algorithms

‘the vector of a word w is “dragged” back-and-forth by the vectors of
W’s co-occurring words, as if there are physical strings between w and
its neighbors...like gravity, or force-directed graph layout.’” [Rong, 2014]

h
X, 1 y.
h, :
WI matrix h¢ WO matrix
X, Leis) Nxv |7
i Connections E o
Connec tions
hy
% Ve
Input Layer Hidden Layer Output Layer

Useful demo of word2vec algorithms: https://ronxin.github.io/wevi/

https://ronxin.github.io/wevi/

Existing approaches and implementations

Selection of learning material

At each training instance, to find out whether the prediction is true, we
have to iterate over all words in the vocabulary.

Existing approaches and implementations

Selection of learning material

At each training instance, to find out whether the prediction is true, we
have to iterate over all words in the vocabulary.

This is not feasible. That's why word2vec uses one of these two smart
tricks:

1. Hierarchical softmax;

2. Negative samping.

Existing approaches and implementations

Hierarchical softmax

n(w,.1)

n(w,,2)

' .
n(w,,3) e S
AN s
\ y @
yd N
OO0 O = 0O O
w, oW Wi o Wy Wy Wy

26

Existing approaches and implementations

Hierarchical softmax

n(w,.1)

n(w,,2)
n(w,,3) _ V4 .
hY //
SO OG-S Q\O
W, oW, Wy Wy Wy, Wy

Calculate joint probability of all items in the binary tree path to the true
word. This will be the probability of choosing the right word.

Now for vocabulary V, the complexity of each prediction is O(log(V))
instead of O(V).

26

Existing approaches and implementations

Negative sampling

The idea of negative sampling is even simpler:

Existing approaches and implementations

Negative sampling

The idea of negative sampling is even simpler:

» do not iterate over all words in the vocabulary;

Existing approaches and implementations

Negative sampling
The idea of negative sampling is even simpler:

» do not iterate over all words in the vocabulary;

» take your true word and sample 5...15 random ‘noise’ words from
the vocabulary;

Existing approaches and implementations

Negative sampling

The idea of negative sampling is even simpler:
» do not iterate over all words in the vocabulary;

» take your true word and sample 5...15 random ‘noise’ words from
the vocabulary;

» these words serve as negative examples.

Existing approaches and implementations

Negative sampling

The idea of negative sampling is even simpler:
» do not iterate over all words in the vocabulary;

» take your true word and sample 5...15 random ‘noise’ words from
the vocabulary;

» these words serve as negative examples.

Calculating probabilities for 15 words is of course much faster than
iterating over all the vocabulary

Existing approaches and implementations

Things are complicated

Existing approaches and implementations

Things are complicated

Model performance hugely depends on training settings
(hyperparameters):

Existing approaches and implementations

Things are complicated

Model performance hugely depends on training settings
(hyperparameters):

1. CBOW or skip-gram algorithm. Needs further research; SkipGram
is generally better (but slower). CBOW seems to be better on small
corpora (less than 100 min tokens).

Existing approaches and implementations

Things are complicated

Model performance hugely depends on training settings
(hyperparameters):

1. CBOW or skip-gram algorithm. Needs further research; SkipGram

is generally better (but slower). CBOW seems to be better on small
corpora (less than 100 min tokens).

2. Vector size: how many distributed semantic features (dimensions)
we use to describe a word. The more is not always the better.

Existing approaches and implementations

Things are complicated

Model performance hugely depends on training settings

(hyperparameters):

1. CBOW or skip-gram algorithm. Needs further research; SkipGram
is generally better (but slower). CBOW seems to be better on small
corpora (less than 100 min tokens).

2. Vector size: how many distributed semantic features (dimensions)
we use to describe a word. The more is not always the better.

3. Window size: context width and influence of distance. Topical
(associative) or functional (semantic proper) models.

Existing approaches and implementations

Things are complicated

Model performance hugely depends on training settings

(hyperparameters):

1. CBOW or skip-gram algorithm. Needs further research; SkipGram
is generally better (but slower). CBOW seems to be better on small
corpora (less than 100 min tokens).

2. Vector size: how many distributed semantic features (dimensions)
we use to describe a word. The more is not always the better.

3. Window size: context width and influence of distance. Topical
(associative) or functional (semantic proper) models.

4. Frequency threshold: useful to get rid of long noisy lexical tail;

Existing approaches and implementations

Things are complicated

Model performance hugely depends on training settings

(hyperparameters):

1. CBOW or skip-gram algorithm. Needs further research; SkipGram
is generally better (but slower). CBOW seems to be better on small
corpora (less than 100 min tokens).

2. Vector size: how many distributed semantic features (dimensions)
we use to describe a word. The more is not always the better.

3. Window size: context width and influence of distance. Topical
(associative) or functional (semantic proper) models.

4. Frequency threshold: useful to get rid of long noisy lexical tail;

5. Selection of learning material: hierarchical softmax or negative
sampling (used more often);

Existing approaches and implementations

Things are complicated

Model performance hugely depends on training settings
(hyperparameters):

1.

CBOW or skip-gram algorithm. Needs further research; SkipGram
is generally better (but slower). CBOW seems to be better on small
corpora (less than 100 min tokens).

. Vector size: how many distributed semantic features (dimensions)

we use to describe a word. The more is not always the better.

Window size: context width and influence of distance. Topical
(associative) or functional (semantic proper) models.

Frequency threshold: useful to get rid of long noisy lexical tail;

Selection of learning material: hierarchical softmax or negative
sampling (used more often);

Number of iterations on our training data, etc...

Existing approaches and implementations

0.70

o
o
©

Average precision

o
o
=)

Window sizes

0.64 -

i i
51400 200 <00
Vector size

Model performance in semantic relatedness task depending on context
width and vector size.

29

Existing approaches and implementations

How do we evaluate trained models?

30

https://sites.google.com/site/repevalacl16/

Existing approaches and implementations

How do we evaluate trained models?

» Semantic relatedness (what is the association degree?):
Rubenstein and Goodenough dataset (1965)

WordSim 353 dataset (2002)

MEN dataset (2013)

SimLex-999 dataset (includes Russian since 2015)

vV vy VvYyy

30

https://sites.google.com/site/repevalacl16/

Existing approaches and implementations

How do we evaluate trained models?
» Semantic relatedness (what is the association degree?):
» Rubenstein and Goodenough dataset (1965)
» WordSim 353 dataset (2002)
» MEN dataset (2013)
» SimLex-999 dataset (includes Russian since 2015)
» Synonym detection (what is most similar?):
» TOEFL dataset (1997)

30

https://sites.google.com/site/repevalacl16/

Existing approaches and implementations

How do we evaluate trained models?
» Semantic relatedness (what is the association degree?):
» Rubenstein and Goodenough dataset (1965)
» WordSim 353 dataset (2002)
» MEN dataset (2013)
» SimLex-999 dataset (includes Russian since 2015)
» Synonym detection (what is most similar?):
» TOEFL dataset (1997)
» Concept categorization (what groups with what?):
» ESSLI 2008 dataset
» Battig dataset (2010)

30

https://sites.google.com/site/repevalacl16/

Existing approaches and implementations

How do we evaluate trained models?
» Semantic relatedness (what is the association degree?):
» Rubenstein and Goodenough dataset (1965)
» WordSim 353 dataset (2002)
» MEN dataset (2013)
» SimLex-999 dataset (includes Russian since 2015)
» Synonym detection (what is most similar?):
» TOEFL dataset (1997)
» Concept categorization (what groups with what?):
» ESSLI 2008 dataset
» Battig dataset (2010)
» Analogical inference (Aisto Bas Cisto ?):
» Google Analogy dataset (2013)
» Many domain-specific datasets inspired by Google Analogy

30

https://sites.google.com/site/repevalacl16/

Existing approaches and implementations

How do we evaluate trained models?
» Semantic relatedness (what is the association degree?):
» Rubenstein and Goodenough dataset (1965)
» WordSim 353 dataset (2002)
» MEN dataset (2013)
» SimLex-999 dataset (includes Russian since 2015)
» Synonym detection (what is most similar?):
» TOEFL dataset (1997)
» Concept categorization (what groups with what?):
» ESSLI 2008 dataset
» Battig dataset (2010)
» Analogical inference (Aisto Bas Cisto ?):
» Google Analogy dataset (2013)
» Many domain-specific datasets inspired by Google Analogy
» Correlation with manually crafted linguistic features:
» QVEC (2015)

Subject to many discussions! The topic of a special workshop at
ACL2016:

https://sites.google.com/site/repevalacli6/
30

https://sites.google.com/site/repevalacl16/

Existing approaches and implementations

Main frameworks and toolkits

1. Dissect (http://clic.cimec.unitn.it/composes/toolkit/);

http://clic.cimec.unitn.it/composes/toolkit/
https://word2vec.googlecode.com/svn/trunk/
http://radimrehurek.com/gensim/
https://www.tensorflow.org/tutorials/word2vec
http://nlp.stanford.edu/projects/glove/

Existing approaches and implementations

1. Dissect (http://clic.cimec.unitn.it/composes/toolkit/);
2. word2vec original C code
(https://word2vec.googlecode.com/svn/trunk/)

http://clic.cimec.unitn.it/composes/toolkit/
https://word2vec.googlecode.com/svn/trunk/
http://radimrehurek.com/gensim/
https://www.tensorflow.org/tutorials/word2vec
http://nlp.stanford.edu/projects/glove/

Existing approaches and implementations

Main frameworks and toolkits

1. Dissect (http://clic.cimec.unitn.it/composes/toolkit/);

2. word2vec original C code
(https://word2vec.googlecode.com/svn/trunk/)

3. Gensim framework for Python, including word2vec implementations
(http://radimrehurek.com/gensim/);

http://clic.cimec.unitn.it/composes/toolkit/
https://word2vec.googlecode.com/svn/trunk/
http://radimrehurek.com/gensim/
https://www.tensorflow.org/tutorials/word2vec
http://nlp.stanford.edu/projects/glove/

Existing approaches and implementations

Main frameworks and toolkits

1. Dissect (http://clic.cimec.unitn.it/composes/toolkit/);

2. word2vec original C code
(https://word2vec.googlecode.com/svn/trunk/)

3. Gensim framework for Python, including word2vec implementations
(http://radimrehurek.com/gensim/);

4. word2vec implementations in Google’s TensorFlow
(https://www.tensorflow.org/tutorials/word2vec);

http://clic.cimec.unitn.it/composes/toolkit/
https://word2vec.googlecode.com/svn/trunk/
http://radimrehurek.com/gensim/
https://www.tensorflow.org/tutorials/word2vec
http://nlp.stanford.edu/projects/glove/

Existing approaches and implementations

Main frameworks and toolkits
1. Dissect (http://clic.cimec.unitn.it/composes/toolkit/);

2. word2vec original C code
(https://word2vec.googlecode.com/svn/trunk/)

3. Gensim framework for Python, including word2vec implementations
(http://radimrehurek.com/gensim/);

4. word2vec implementations in Google’s TensorFlow
(https://www.tensorflow.org/tutorials/word2vec);

5. GloVe reference implementation
(http://nlp.stanford.edu/projects/glove/).

http://clic.cimec.unitn.it/composes/toolkit/
https://word2vec.googlecode.com/svn/trunk/
http://radimrehurek.com/gensim/
https://www.tensorflow.org/tutorials/word2vec
http://nlp.stanford.edu/projects/glove/

Existing approaches and implementations

A bunch of observations

» Wikipedia is not the best training corpus: fluctuates wildly
depending on hyperparameters. Perhaps, too specific language.

Existing approaches and implementations

A bunch of observations

» Wikipedia is not the best training corpus: fluctuates wildly
depending on hyperparameters. Perhaps, too specific language.

» Normalize you data: lowercase, lemmatize, merge multi-word
entities.

Existing approaches and implementations

» Wikipedia is not the best training corpus: fluctuates wildly
depending on hyperparameters. Perhaps, too specific language.

» Normalize you data: lowercase, lemmatize, merge multi-word
entities.

» It helps to augment words with PoS tags before training (‘crars_ N’).
As a result, your model becomes aware of morphological ambiguity.

Existing approaches and implementations

A bunch of observations
» Wikipedia is not the best training corpus: fluctuates wildly
depending on hyperparameters. Perhaps, too specific language.

» Normalize you data: lowercase, lemmatize, merge multi-word
entities.

» It helps to augment words with PoS tags before training (‘crars_ N’).
As a result, your model becomes aware of morphological ambiguity.

» Remove your stop words yourself. Statistical downsampling
implemented in word2vec algorithms can easily deprive you of
valuable text data.

e Model formats

32

Model formats

Models can come in several formats:

1. Simple text format: words and sequences of values representing
their vectors, one word per ling; first line gives information on the
number of words in the model and vector size.

Model formats

Models can come in several formats:

1. Simple text format: words and sequences of values representing
their vectors, one word per ling; first line gives information on the
number of words in the model and vector size.

2. The same in the binary form.

Model formats

Models can come in several formats:

1. Simple text format: words and sequences of values representing
their vectors, one word per ling; first line gives information on the
number of words in the model and vector size.

2. The same in the binary form.

3. Gensim binary format: uses NumPy matrices saved via Python
pickles; stores a lot of additional information (input vectors, training
algorithm, word frequency, etc).

Gensim works with all of these formats.

@ What can we find in the models?

33

What can we find in the models?

» Distributional models are based on word co-occurrences in large
training corpora;

34

What can we find in the models?

» Distributional models are based on word co-occurrences in large
training corpora;
» they represent words as dense lexical vectors (embeddings);

34

What can we find in the models?

» Distributional models are based on word co-occurrences in large
training corpora;
» they represent words as dense lexical vectors (embeddings);

» the models are also distributed: each word is represented as
multiple activations (not a one-hot vector);

34

What can we find in the models?

Distributional models are based on word co-occurrences in large
training corpora;
they represent words as dense lexical vectors (embeddings);

the models are also distributed: each word is represented as
multiple activations (not a one-hot vector);

words occurring in similar contexts have similar vectors;

v

v

v

v

34

What can we find in the models?

» Distributional models are based on word co-occurrences in large
training corpora;
» they represent words as dense lexical vectors (embeddings);

» the models are also distributed: each word is represented as
multiple activations (not a one-hot vector);

» words occurring in similar contexts have similar vectors;

» one can find nearest semantic associates of a given word by
calculating cosine similarity between vectors.

34

What can we find in the models?

Nearest semantic associates

BEKTOD:

mapamerp 0.433
mumoss 0.423
nepemenHas 0.423
koopauaara 0.413
mrockocThb 0.410

nampasienne 0.404

N o ok~

(From a model trained on the Russian National Corpus)

What can we find in the models?

Works with multi-word entities as well

What can we find in the models?

Works with multi-word entities as well

Alan_Turing (from a model trained on
Google News corpus (2013)):

36

What can we find in the models?

Works with multi-word entities as well

Alan_Turing (from a model trained on
Google News corpus (2013)):

1. Turing 0.68

36

What can we find in the models?

Works with multi-word entities as well

Alan_Turing (from a model trained on
Google News corpus (2013)):

1. Turing 0.68
2. Charles_Babbage 0.65

36

What can we find in the models?

Works with multi-word entities as well

Alan_Turing (from a model trained on
Google News corpus (2013)):

1. Turing 0.68
2. Charles_Babbage 0.65
3. mathematician_Alan_Turing 0.62

36

What can we find in the models?

Works with multi-word entities as well

Alan_Turing (from a model trained on
Google News corpus (2013)):

1. Turing 0.68

2. Charles_Babbage 0.65

3. mathematician_Alan_Turing 0.62
4. pioneer_Alan_Turing 0.60

36

What can we find in the models?

Works with multi-word entities as well

Alan_Turing (from a model trained on
Google News corpus (2013)):

1. Turing 0.68
2. Charles_Babbage 0.65
mathematician_Alan_Turing 0.62

pioneer_Alan_Turing 0.60
On_Computable_Numbers 0.60

o o~ w

36

What can we find in the models?

One can apply simple algebraic operations to word vectors (addition,
subtraction, finding average vector for a group of words). They reflect
semantic relationships between words.

O

swimming

Male-Female Verb tense

37

What can we find in the models?

One can apply simple algebraic operations to word vectors (addition,
subtraction, finding average vector for a group of words). They reflect
semantic relationships between words.

)
swimming

Male-Female Verb tense

caMoJIeT is t0 KpbL1o as mammmHa i 10 ?

37

What can we find in the models?

One can apply simple algebraic operations to word vectors (addition,
subtraction, finding average vector for a group of words). They reflect
semantic relationships between words.

)
swimming

Male-Female Verb tense

camoJIeT IS t0 kpbL1o as mammmHa IS 10 ? (koseco)

37

What can we find in the models?

One can apply simple algebraic operations to word vectors (addition,
subtraction, finding average vector for a group of words). They reflect
semantic relationships between words.

O

swimming

Male-Female Verb tense

camoJIeT IS t0 kpbL1o as mammmHa IS 10 ? (koseco)
This paves way for many sense-related applications.

37

What can we find in the models?

India

! "

?7?

Nigeria

Boko_Haram
googlenews model
1. jehadis 0.53280
2. Naxalites 0.52525
3. Kashmiri_militant
0.52517
4. LeT 0.51489
5. Lashkar_e_Tayyaba
0.51067

38

What can we find in the models?

Nigeria Egypt

! "

299

googlenews model

Boko Haram

1. Muslim_Brotherhood
0.56775

. Egyptians 0.56694

. Mubarak 0.56404

. Hamas 0.55456

. Egyptian 0.53355

s WM

39

What can we find in the models?

Nigeria Russia

! !

222
Boko_Haram e

googlenews model

1. Kremlin 0.57884

2. Basayev 0.55851

3. Moscow 0.55125

4. Chechen_separatist_rebels
0.52799

5. Chechen_rebe
0.52108

40

http://ltr.uio.no/semvec/calculator
http://ling.go.mail.ru/dsm/calculator

What can we find in the models?

Nigeria Russi

! !

?7?

[

Boko_Haram

googlenews model

1. Kremlin 0.57884

2. Basayev 0.55851

3. Moscow 0.55125

4. Chechen_separatist_rebels
0.52799

5. Chechen_rebe
0.52108

Try yourself at
http://1ltr.uio.no/semvec/calculator,

http://ling.go.mail.ru/dsm/calculator
40

http://ltr.uio.no/semvec/calculator
http://ling.go.mail.ru/dsm/calculator

What can we find in the models?

Hot topics in word embeddings now

(based on impressions from this year’s ACL conference)

» Going beyond just synonyms and similarity: detecting hyponyms,
hypernyms and antonyms;

What can we find in the models?

Hot topics in word embeddings now

(based on impressions from this year’s ACL conference)

» Going beyond just synonyms and similarity: detecting hyponyms,
hypernyms and antonyms;

» Using embeddings to help other NLP tasks: e.g., parsing;

What can we find in the models?

Hot topics in word embeddings now
(based on impressions from this year’s ACL conference)

» Going beyond just synonyms and similarity: detecting hyponyms,
hypernyms and antonyms;

» Using embeddings to help other NLP tasks: e.g., parsing;
» Finding better ways to evaluate models;

What can we find in the models?

Hot topics in word embeddings now
(based on impressions from this year’s ACL conference)

» Going beyond just synonyms and similarity: detecting hyponyms,
hypernyms and antonyms;

» Using embeddings to help other NLP tasks: e.g., parsing;
» Finding better ways to evaluate models;
» Learning bilingual or multilingual word embeddings;

What can we find in the models?

Hot topics in word embeddings now

(based on impressions from this year’s ACL conference)

>

Going beyond just synonyms and similarity: detecting hyponyms,
hypernyms and antonyms;

Using embeddings to help other NLP tasks: e.g., parsing;
Finding better ways to evaluate models;
Learning bilingual or multilingual word embeddings;

Diachronic word embeddings: discovering semantic shifts
happening over time;

What can we find in the models?

Hot topics in word embeddings now

(based on impressions from this year’s ACL conference)

>

v

Going beyond just synonyms and similarity: detecting hyponyms,
hypernyms and antonyms;

Using embeddings to help other NLP tasks: e.g., parsing;
Finding better ways to evaluate models;
Learning bilingual or multilingual word embeddings;

Diachronic word embeddings: discovering semantic shifts
happening over time;

...and of course going beyond words: sentence embeddings.

e More than words: representing texts

41

More than words: representing texts

» Word embeddings allow to trace semantic similarity at word level.

42

More than words: representing texts

» Word embeddings allow to trace semantic similarity at word level.
» Can they help in detecting similar texts?

42

More than words: representing texts

» Word embeddings allow to trace semantic similarity at word level.
» Can they help in detecting similar texts?
» Yes they can!

42

More than words: representing texts

v

Word embeddings allow to trace semantic similarity at word level.

v

Can they help in detecting similar texts?
Yes they can!

v

v

Basically, we just need a way to combine word vectors into
phrase/sentence/document vectors.

42

More than words: representing texts

v

Word embeddings allow to trace semantic similarity at word level.

v

Can they help in detecting similar texts?

v

Yes they can!

v

Basically, we just need a way to combine word vectors into
phrase/sentence/document vectors.

For example, they can be 300-dimensional (as in the models).

v

42

More than words: representing texts

» Word embeddings allow to trace semantic similarity at word level.
» Can they help in detecting similar texts?
» Yes they can!

» Basically, we just need a way to combine word vectors into
phrase/sentence/document vectors.

» For example, they can be 300-dimensional (as in the models).

» After the documents are represented as vectors,
classification/clustering becomes trivial.

42

More than words: representing texts

Simple but efficient: semantic fingerprints

» Whole document can be represented as average vector S over
vectors of all words wy...nin it: ‘semantic fingerprints’.

43

More than words: representing texts

Simple but efficient: semantic fingerprints

» Whole document can be represented as average vector S over
vectors of all words wy...nin it: ‘semantic fingerprints’.

Average

Semantic
fingerprint

43

More than words: representing texts

Simple but efficient: semantic fingerprints

» Whole document can be represented as average vector S over
vectors of all words wy...nin it: ‘semantic fingerprints’.

Average

Semantic
fingerprint

n
* _»n (4)
i=0

o1
S=-—
n

43

More than words: representing texts

Why semantic fingerprints are so cool?

» Generalized representations do not depend on particular words;

More than words: representing texts

Why semantic fingerprints are so cool?

» Generalized representations do not depend on particular words;

» With semantic fingerprints approach, we take advantage of
‘semantic features’ learned during the model training;

More than words: representing texts

Why semantic fingerprints are so cool?

» Generalized representations do not depend on particular words;
» With semantic fingerprints approach, we take advantage of
‘semantic features’ learned during the model training;

» Topically connected words collectively increase or decrease
expression of the corresponding semantic components;

More than words: representing texts

Why semantic fingerprints are so cool?

>

| 2

Generalized representations do not depend on particular words;

With semantic fingerprints approach, we take advantage of
‘semantic features’ learned during the model training;

Topically connected words collectively increase or decrease
expression of the corresponding semantic components;

Thus, topical words automatically become more important than
noise words;

Semantic fingerprints are precise enough to reveal topical
differences between documents in corpora;

More than words: representing texts

Why semantic fingerprints are so cool?

>

| 2

Generalized representations do not depend on particular words;

With semantic fingerprints approach, we take advantage of
‘semantic features’ learned during the model training;

Topically connected words collectively increase or decrease
expression of the corresponding semantic components;

Thus, topical words automatically become more important than
noise words;

Semantic fingerprints are precise enough to reveal topical
differences between documents in corpora;

Semantic fingerprints work fast and can reuse already trained
models.

More than words: representing texts

Why semantic fingerprints are so cool?

>

| 2

Generalized representations do not depend on particular words;

With semantic fingerprints approach, we take advantage of
‘semantic features’ learned during the model training;

Topically connected words collectively increase or decrease
expression of the corresponding semantic components;

Thus, topical words automatically become more important than
noise words;

Semantic fingerprints are precise enough to reveal topical
differences between documents in corpora;

Semantic fingerprints work fast and can reuse already trained
models.

See more in [Kutuzov et al., 2016] (shameless plug :))).

More than words: representing texts

We can also learn vectors for texts during training

» [Mikolov et al., 2013] proposed Paragraph Vector;

More than words: representing texts

We can also learn vectors for texts during training

» [Mikolov et al., 2013] proposed Paragraph Vector;

» the algorithm takes as an input sentences/texts tagged with
(possibly unique) identifiers;

More than words: representing texts

We can also learn vectors for texts during training

» [Mikolov et al., 2013] proposed Paragraph Vector;

» the algorithm takes as an input sentences/texts tagged with
(possibly unique) identifiers;

» learns distributed representations for these multi-word entities, such
that similar sentences have similar vectors, etc...;

More than words: representing texts

We can also learn vectors for texts during training

» [Mikolov et al., 2013] proposed Paragraph Vector;

» the algorithm takes as an input sentences/texts tagged with
(possibly unique) identifiers;

» learns distributed representations for these multi-word entities, such
that similar sentences have similar vectors, etc...;

» implemented in Gensim under the name doc2vec;

More than words: representing texts

We can also learn vectors for texts during training

» [Mikolov et al., 2013] proposed Paragraph Vector;

» the algorithm takes as an input sentences/texts tagged with
(possibly unique) identifiers;

» learns distributed representations for these multi-word entities, such
that similar sentences have similar vectors, etc...;

» implemented in Gensim under the name doc2vec;

» not much studied;

More than words: representing texts

We can also learn vectors for texts during training

» [Mikolov et al., 2013] proposed Paragraph Vector;

» the algorithm takes as an input sentences/texts tagged with
(possibly unique) identifiers;

learns distributed representations for these multi-word entities, such
that similar sentences have similar vectors, etc...;

implemented in Gensim under the name doc2vec;

not much studied;

» very memory-hungry (but one can reduce the number of tags)!

v

v

v

More than words: representing texts

Other possibilities

» [Taddy, 2015] proposed classifying texts by inverting distributional
models:

More than words: representing texts

Other possibilities

» [Taddy, 2015] proposed classifying texts by inverting distributional
models:

» employs Bayes rule to calculate the likelihood of a model given a
sentence;

More than words: representing texts

Other possibilities

» [Taddy, 2015] proposed classifying texts by inverting distributional
models:

» employs Bayes rule to calculate the likelihood of a model given a
sentence;

» for example, models trained on positive and negative reviews;

More than words: representing texts

Other possibilities

» [Taddy, 2015] proposed classifying texts by inverting distributional
models:

» employs Bayes rule to calculate the likelihood of a model given a
sentence;

» for example, models trained on positive and negative reviews;

» implemented in Gensim (for hierarchical softmax models only);

More than words: representing texts

Other possibilities

» [Taddy, 2015] proposed classifying texts by inverting distributional
models:

» employs Bayes rule to calculate the likelihood of a model given a
sentence;

» for example, models trained on positive and negative reviews;
» implemented in Gensim (for hierarchical softmax models only);
» drawback: you need separate models for each of your classes.

More than words: representing texts

There can be many other ways to employ word embeddings in
classification tasks!

47

More than words: representing texts

There can be many other ways to employ word embeddings in
classification tasks!
We will try to work with the semantic fingerprints approach.

47

References |

[4 Bengio, Y., Ducharme, R., and Vincent, P. (2003).
A neural probabilistic language model.
Journal of Machine Learning Research, 3:1137—1155.

[4 Bullinaria, J. A. and Levy, J. P. (2007).
Extracting semantic representations from word co-occurrence
statistics: A computational study.
Behavior research methods, 39(3):510-526.

[d Firth, J. (1957).
A synopsis of linguistic theory, 1930-1955.
Blackwell.

48

References Il

[3 Kutuzov, A., Kopotev, M., Ivanova, L., and Sviridenko, T. (2016).
Clustering comparable corpora of Russian and Ukrainian academic
texts: Word embeddings and semantic fingerprints.

In Proceedings of the Ninth Workshop on Building and Using
Comparable Corpora, held at LREC-2016, pages 3—10. European
Language Resources Association.

[Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J.
(2013).
Distributed representations of words and phrases and their
compositionality.
Advances in Neural Information Processing Systems 26.

4 Pennington, J., Socher, R., and Manning, C. D. (2014).
GloVe: Global vectors for word representation.
In Empirical Methods in Natural Language Processing (EMNLP),
pages 1532—-1543.

49

References llI

[4 Rong, X. (2014).
word2vec parameter learning explained.
arXiv preprint arXiv:1411.2738.

[4 Taddy, M. (2015).
Document classification by inversion of distributed language
representations.
In Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume 2: Short
Papers), pages 45-49, Beijing, China.

[4 Van der Maaten, L. and Hinton, G. (2008).
Visualizing data using t-SNE.
Journal of Machine Learning Research, 9(2579-2605):85.

50

Thank you for your attention!
Questions are welcome.

Distributed Word Embeddings
in Text Classification

Andrey Kutuzov (andreku@ifi.uio.no)
Language Technology Group
University of Oslo

ISMW-FRUCT school
Saint-Petersburg, Russia

50

	Our motivation
	TL:DR
	Distributional hypothesis and word embeddings
	Existing approaches and implementations
	Model formats
	What can we find in the models?
	More than words: representing texts

