The subject-object-verb word order as a self-cueing strategy in aphasia: An exploratory study

RESEARCH GOAL 1:

To quantitatively measure whether SOV is most frequent among non-canonical

word orders in Russian speakers with aphasia

¹ Center for Language and Brain, National Research University Higher School of Economics, Moscow, Russia; ² Federal Center for Cerebrovascular Pathology and Stroke, Moscow, Russia; ³ University of Groningen, Groningen, the Netherlands

Background

vyazhet Zhenschina sviter. knit sweater woman S V 0 Zhenschina sviter vyazhet. knit sweater woman S 0 V

UNIVERSITY

- People with aphasia often use non-canonical word orders
- Observation: subject-object-verb (SOV) may be a particularly frequent non-canonical order
 - Both in Russian, language with flexible word order (Akhutina, 1989)
 - And in English, language with SVO word order
 - (Scholes, 1982)

SOV:

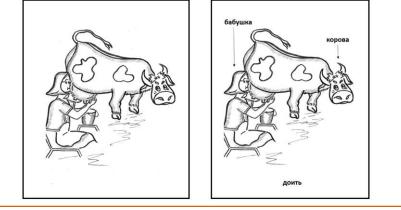
- Why is SOV order prevalent? Typically explained by syntactic deficits:
 - Use of unmarked word order (Scholes, 1982)
 - But: Is SOV really an unmarked order across languages?
 - Use of "semantic syntax" reflecting the conceptual

representation of the situation (Akhutina, 2003)

- But: Is SOV the best match to the conceptual

representation?

RESEARCH GOAL 2:


To test the **alternative account** for prevalence of SOV order:

Can it be a **self-cueing strategy** for verb retrieval?

Method

Re-analysis of previously collected data (Malyutina, Zelenkova &

• Tasks: (1) Single-word action naming;

Savcenko, SoA 2018)

• Participants: 40 individuals with post-stroke aphasia (20 'non-fluent',

20 'fluent'; 17 females; age: mean 59, SD 12.1, range 23-77 years)


(2) Cued sentence production

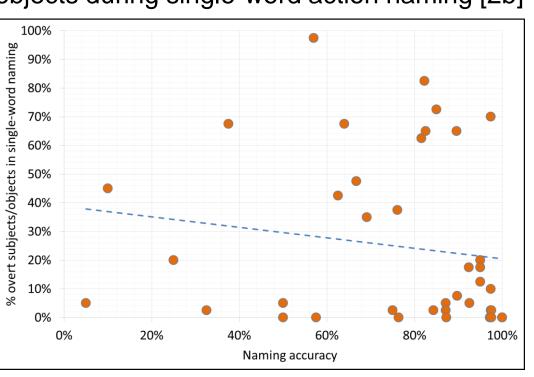
- **Stimuli:** 40 transitive verbs
 - 20 obligatory transitive and 20 optional transitive

Analysis and Results

RESEARCH GOAL 1

(1a) Is SOV the most prevalent non-canonical order in sentence production? \rightarrow Proportion of different word orders in sentence production

(2b) Do PWA overtly name subjects/objects in singleword naming, non-compliant with the task? \rightarrow % overt use of subjects and objects in naming

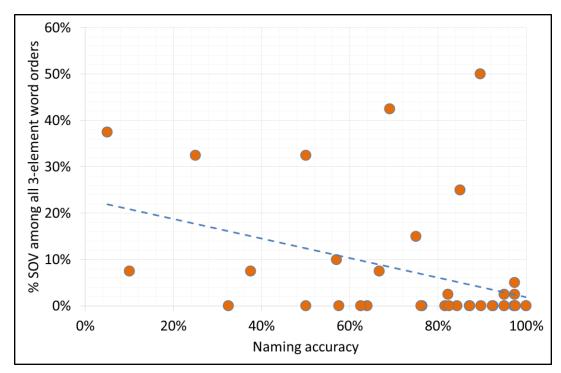

% of all trials		Subjects	Objects	Total (subjects, objects, ambiguous)
'Non-fluent'	Mean	2.0%	9.5%	12.6%
	SD	7.3%	15.7%	23.3%
	Min	0.0%	0.0%	0.0%
	Max	32.5%	52.5%	82.5%
'Fluent'	Mean	7.3%	24.5%	37.3%
	SD	16.8%	22.7%	30.2%
	Min	0.0%	0.0%	0.0%
	Max	67.5%	67.5%	97.5%

Yes: PWA name many subjects and particularly objects during single-word naming

- At the group level: Yes, SOV is the most prevalent noncanonical word order
- At the individual level: Out of 18 participants who
- produced any non-canonical three-element orders, 13
- participants produced the SOV order in > 50% of such

responses

(2b) Do PWA with greater naming difficulty use more subject/object cues in naming? \rightarrow Correlation of naming accuracy with % overt use of subjects and objects during single-word action naming [2b]



Yes: Lower naming accuracy ~ Greater overt use of

subjects and objects in single-word action naming,

RESEARCH GOAL 2

(2a) Do PWA with greater naming difficulty use more SOV in sentence production? \rightarrow Correlation of naming accuracy with % SOV in sentence production [1a]

Yes: Lower naming accuracy ~ Greater proportion of

Possibly to self-cue verb retrieval

r(38) = -.33, p = .04

SOV in sentence production, r(38) = -.41, p = .008

(2d) Group-level correlations partly driven by high performers \rightarrow Additional individual-level analysis for each participant

Within-person, does the use of subject/object cues lead to

more accurate single-word action naming? \rightarrow Fisher's

exact test for each participant, 2x2 (Verb naming accuracy

x Use of subject/object cue in naming)

No significant effects. Example -

		Use of Cue					
		No	Yes				
Naming	Correct	15	11				
	Incorrect	4	8				
Fisher's exact test: $p = .30$							

Within-person, do single-word verb naming difficulties promote the use of SOV order in sentence production? \rightarrow Fisher's exact test for each participant, 2x2 (Verb retrieval accuracy x Use of

SOV in sentence production)

• No significant effects

Discussion

- SOV is most prevalent among non-canonical word orders in Russian speakers with aphasia
- Is it a cueing strategy?
 - Possibly, but more appropriate methods of individual-level analysis needed
- Future directions:
 - Non-cued sentence production task
 - Controlled experiment manipulating verb cueing via subjects and/or objects